Enrollment No: \_\_\_\_

\_\_\_\_\_ Exam Seat No:\_\_\_\_\_

# C.U.SHAH UNIVERSITY Summer Examination-2018

#### **Subject Name: Advanced Optimization Techniques**

| Subject Code: 5TE02AOT1 |                 | Branch: M.Tech. Mechanical (CAD/CAM) |                |           |
|-------------------------|-----------------|--------------------------------------|----------------|-----------|
| Semester: 2             | Date:04/05/2018 | Time:                                | 10.30 To 01.30 | Marks: 70 |

#### **Instructions:**

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

## SECTION – I

| Q-1 |             | Attempt the Following questions                                                                         |      |
|-----|-------------|---------------------------------------------------------------------------------------------------------|------|
|     | a.          | What do you understand by optimization?                                                                 | (01) |
|     | b.          | What is the Lagrange multiplier method?                                                                 | (01) |
|     | c.          | Define the term "constrained surface".                                                                  | (01) |
|     | d.          | What is an inflection point and how do you identify it?                                                 | (01) |
|     | e.          | Define the term global optima.                                                                          | (01) |
|     | f.          | Define the term Posynomial.                                                                             | (01) |
|     | g.          | State the function $f(x) = -8x^2$ convex or concave.                                                    | (01) |
| 0-2 |             | Attempt all questions                                                                                   |      |
| L.  | (a)         | Write the different applications of optimizations in various fields of engineering.                     | (07) |
|     | (b)         | Minimize $f = x_1^2 + 2x_2^2 + 3x_3^2$                                                                  | (07) |
|     |             | subject to $x_1 - x_2 - 2x_3 \le 12$ , $x_1 + 2x_2 - 3x_3 \le 8$ Using Kuhn-Tucker Conditions           |      |
|     |             | OR                                                                                                      |      |
| Q-2 |             | Attempt all questions                                                                                   |      |
|     | <b>(a)</b>  | Minimize f (X) = $-3x_1^2 - 6x_1x_2 - 5x_2^2 + 7x_1 + 5x_2$ Subject to $x_1 + x_2 = 5$ using            | (07) |
|     |             | Lagrange multiplier method.                                                                             |      |
|     | <b>(b</b> ) | State the differences between following entities                                                        | (07) |
|     |             | 1. Single objective optimization and multi objective optimization                                       |      |
|     |             | 2. Quadratic programming and geometric programming                                                      |      |
| Q-3 |             | Attempt all questions                                                                                   |      |
|     | <b>(a)</b>  | Analyze the function $f(x) = -x_1^2 - x_2^2 - x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_1 - 5x_3 + 2$ and classify | (07) |
|     |             | the stationary points as maxima, minima and points of inflection.                                       |      |
|     | <b>(b)</b>  | Differentiate between Fibonacci and golden section methods of optimization in                           | (07) |
|     |             | brief.                                                                                                  |      |
|     |             |                                                                                                         |      |



### OR

| Q-3        | <b>(a)</b> | Using Newton Raphson method find minimum $f(x) = \frac{1}{2}x^2 - \sin x$ starting with                                | (07) |  |  |  |
|------------|------------|------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
|            |            | $x_0 = 0.5$ , Take required accuracy $\varepsilon = 10^{-5}$ where $ x ^{(k+1)} - x^k  < \varepsilon$ .                |      |  |  |  |
|            | <b>(b)</b> | Minimize $f(x) = x^4 - 14x^3 + 60x^2 - 70x$ in the range [0 2] by the Golden Section                                   | (07) |  |  |  |
|            |            | method using $N = 4$ and Locate this value of x to within a range of 0.3.                                              |      |  |  |  |
|            |            | SECTION – II                                                                                                           |      |  |  |  |
| Q-4        |            | Attempt the Following questions                                                                                        |      |  |  |  |
|            | a.         | Define a stochastic programming problem.                                                                               | (01) |  |  |  |
|            | b.         | What do you understand by a gradient of a function?                                                                    | (01) |  |  |  |
|            | c.         | What do you understand by 'penalty method'?                                                                            | (01) |  |  |  |
|            | d.         | Answer true or false with justification: The steepest descent directions are the best possible directions.             | (01) |  |  |  |
|            | e.         | Define Fibonacci numbers.                                                                                              | (01) |  |  |  |
|            | f.         | How genetic algorithm is useful for the optimization of a function?                                                    | (01) |  |  |  |
|            | g.         | Why is refitting necessary in interpolation methods?                                                                   | (01) |  |  |  |
| Q-5        |            | Attempt all questions                                                                                                  |      |  |  |  |
|            | (a)        | Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ starting with (0, 0) <sup>T</sup> , using Cauchy method. | (07) |  |  |  |
|            | <b>(b)</b> | Explain interior penalty function method.                                                                              | (07) |  |  |  |
|            | OR         |                                                                                                                        |      |  |  |  |
| Q-5        |            | Attempt all questions                                                                                                  |      |  |  |  |
|            | (a)        | Minimize $f(x_1, x_2) = 4x_1^2 + 3x_2^2 - 4x_1x_2 + x_1$ starting with $(0, 0)^1$ , using conjugate gradient method.   | (07) |  |  |  |
|            | <b>(b)</b> | Explain Quadratic Interpolation Method of optimization in detail.                                                      | (07) |  |  |  |
| Q-6        |            | Attempt all questions                                                                                                  |      |  |  |  |
| -          | <b>(a)</b> | Prove that optimization in power transmitted by spur gear pair occurs where the                                        | (07) |  |  |  |
|            |            | tangential load is equal to dynamic load when the criterion for the failure is                                         |      |  |  |  |
|            |            | scoring. Assume dynamic load to be directly proposal to pinion speed                                                   |      |  |  |  |
|            | <b>(b)</b> | Discuss the importance and use of MATLAB Optimization Toolbox for Solving                                              | (07) |  |  |  |
|            |            | Optimization Problems.                                                                                                 |      |  |  |  |
| <b>A</b> - |            | OR                                                                                                                     |      |  |  |  |
| Q-6        |            | Attempt all Questions                                                                                                  |      |  |  |  |

- (a) Minimize  $f(x) = 2x_1^{-1}x_2^{-1} + \frac{3}{2}x_2^{-2} + 2x_1x_2^{-2}$  by using geometric programming method. (07)
- (b) Explain the following terms associated with GA: Reproduction, crossover and (07) mutation.

